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compared taV? for Levinson’s method. These methods are too complicated to include here.
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2.9 Cholesky Decomposition

If a square matrixA happens to be symmetric and positive definite, then it has a

special, more efficient, triangular decompositiorBymmetric means that;; = aj; for
i,7 = 1,..., N, while positive definite means that

v-A.v>0 forall vectorsv (2.9.1

(In Chapter 11 we will see that positive definite has the equivalent interpretatioA thas

all positive eigenvalues.) While symmetric, positive definite matrices are rather special, the:

occur quite frequently in some applications, so their special factorization, dahelgsky

decomposition, is good to know about. When you can use it, Cholesky decomposition is abou

a factor of two faster than alternative methods for solving linear equations.
Instead of seeking arbitrary lower and upper triangular factorand U, Cholesky

decomposition constructs a lower triangular malriwhose transpose” can itself serve as

the upper triangular part. In other words we replace equation (2.3.1) by
L-LT=A (2.9.2

This factorization is sometimes referred to as “taking the square root” of the miatrthe
components of.T are of course related to those ofby

L =Ly (2.9.3

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations;

(2.3.12)~(2.3.13),

i—1 1/2
Ly = (a - Z Lfk> (2.9.4
k=1
and

i—1
1 . . .

Lj; = I (aij_ E Liijk> j=t1+1i+2,....N (295)
1 kj:l
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90 Chapter 2. Solution of Linear Algebraic Equations

If you apply equations (2.9.4) and (2.9.5) in the order 1,2,..., N, you will see
that the L's that occur on the right-hand side are already determined by the time they are
needed. Also, only components; with j > ¢ are referenced. (Sinc& is symmetric,
these have complete information.) It is convenient, then, to have the faatwerwrite the
subdiagonal (lower triangular but not including the diagonal) pa# gbreserving the input
upper triangular values &. Only one extra vector of lengtN is needed to store the diagonal
part of L. The operations count i&%/6 executions of the inner loop (consisting of one
multiply and one subtract), with alsy square roots. As already mentioned, this is about a
factor 2 better thallU decomposition oA (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)
Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L-L7. On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).
INTEGER i,j,k
REAL sum
do13 i=1,n
do12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1
sum=sum-a(i,k)*a(j,k)

enddo 11
if(i.eq.j)then
if (sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not
p(i)=sqrt (sum) positive definite.
else
a(j,i)=sum/p(i)
endif
enddo 12
enddo 13
return
END
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You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failuseaqfdc
simply indicates that the matri (or, with roundoff error, another very nearby matrix) is
not positive definite. In facttholdc is an efficient way to tesvhether a symmetric matrix
is positive definite. (In this application, you will want to replace gamse with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a line
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)

INTEGER n,np

REAL a(np,np),b(n),p(n),x(n)
Solves the set of n linear equations A - X = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k

REAL sum

do12 i=1,n Solve L -y = b, storing y in X.
sum=b (i)
do 11 k=i-1,1,-1

sum=sum-a (i, k)*x (k)
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enddo 11
x(i)=sum/p(i)

enddo 12

do 14 i=n,1,-1 Solve LT . x =y.
sum=x (i)
do 13 k=i+1,n

sum=sum-a(k, i) *x (k)

enddo 13
x(i)=sum/p(i)

enddo 14

return

END

Atypical use ofcholdc andcholsl is in the inversion of covariance matrices describing
the fit of data to a model; see, e.§15.6. In this, and many other applications, one often needs
L. The lower triangle of this matrix can be efficiently found from the outputtafldc:

do 13 i=1,n
a(i,i)=1./p(i)
do12 j=i+l,n
sum=0.
do 11 k=i, j-1
sum=sum-a(j,k)*a(k,i)
enddo 11
a(j,i)=sum/p(j)
enddo 12
enddo 13
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2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-cafed
decomposition,
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A=Q-R (2.10.3
HereR is upper triangular, whil&® is orthogonal, that is,
or.Q0=1 (2.10.2

where Q7T is the transpose matrix d. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN x N.
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